
An Expression Formatter
for MACSYMA

Bruce R. Miller

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

QC

100

.056

NO. 5618

1995

NIST

NISTIR 5618

An Expression Formatter

for MACSYMA

Bruce R. Miller

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

July 1995

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

An expression formatter for Macsyma

Bruce R. Miller*

July 6, 1995

Abstract

A package for formatting algebraic expressions in MACSYMA^ is de-

scribed. It provides facilities for user-directed hierarchical structuring of

expressions, as well eis for directing simpHiications to selected subexpres-

sions. It emphasizes a semantic rather than syntactic description of the

desired form. The package also provides utilities for obtaining efficiently

the coefficients of polynomials, trigonometric sums and power series. Sim-

ilar capabilities would be useful in other computer algebra systems.

Keywords: algebraic structure, computer algebra, MACSYMA, simplifi-

cation, software, transformation.

1 Introduction

In a general purpose Computer Algebra System (CAS), any particular mathe-

matical expression can take on a variety of forms: expanded form, factored form

or anything in between. Each form may have advantages; a given form may be

more compact than another, or allow clear expression of certain algorithms. Or

it may simply be more informative, particularly if it has physical significance.

A CAS contains many tools for transforming expressions. However, most

are like Macsyma’s[1] factor and expand, operating only on the entire ex-

pression or its top level. At the other extreme are operations like substpart

which extract a specific part of an expression, then transform and replace it.

Unfortunately, the means of specifying the piece of interest is purely syntactic,

requiring the user to keep close watch on the form of the arguments to avoid

error.

The package described here gives users of Macsyma more control over the

structure of expressions, and it does so using a more semantic, almost algebraic,

language describing the desired structure. It also provides a semantic means of

addressing parts of an expression for particular simplifications. For example, to

’Emailanillerecam.nist .gov

*^The use of commercial products or their names implies no endorsement by NIST, the

Dept, of Commerce or the U.S. Government.

1

rearrange an expression into a series in eps through order 5, whose terms will

be polynomials in the x and y, whose coefficients, in turn, will be trigonometric

sums in 1 and g with factored coefficients one uses the command:

format(f oo, %series(eps, 5), %poly(x, y), %trig(l, g), %f actor);

— more easily invoked than described.

An expression ‘formatting’ tool for a general purpose system was reported

in [4] for Scratchpad, predating the user-specified canonical representations of

Axiom and the author’s system MAO. Jeffrey Golden[3] proposed a similar

system for Macsyma— although never implemented, his design provided inspi-

ration and a good naming convention for the package described here. A different

addressing scheme for directing simplifications in Mathematica was reported in

[5]. Thus the general idea behind these tools is not new, yet the tools themselves

are not commonly available in most CAS. Further, we feel that our synthesis is

unique. And while our syntax may be a bit baroque, including many keywords,

we have found the package to be an indispensable tool in practice.

Two modules are documented in this report. The principal tool, format, is

described in Section 2. It uses procedures in coeflist which obtain coefficients

of polynomials, trigonometric sums and power series. The latter module can be

useful alone; it is documented in section 3. An appendix discusses implementa-

tion issues. The LiSP source code may be obtained from the author.

2 FORMAT; Formatting expressions

f ormat(eipr,<empfa<ei,. .
.)

Function

Recursively arranges eipr according to the c/iam of templates, templatei.

Each template indicates the desired form for an expression; either the ex-

pected form or that into which it will be transformed. At the same time, the

indicated form implies a set of pieces-, the next template in the chain applies to

those pieces. For example, '/,poly(x) specifies the transformation into a poly-

nomial in X, with the pieces being the coefficients. The passive ’/,frac treats the

expression as a fraction; the pieces are the numerator and denominator.

Whereas the next template formats all pieces of the previous layer, positional

subtemplates may be used to specify formats for each piece individually. This is

most useful when the pieces have unique roles and need to be treated differently,

such as a fraction’s numerator and denominator.

The full syntax of a template is

keyword{parameter , . . .){suhtemplate , . . .].

The recognized keywords are described in Table 1. The parameters (if not

needed) and subtemplates (along with parentheses and brackets) are optional.

2

In addition to the keyword templates, arithmetic patterns are recognized.

This is an expression involving addition, multiplication and exponentiation con-

taining a single instance of a keyword template. In effect, the system ‘solves’ the

expression to be formatted for the corresponding part, formats it accordingly

and reinserts it. Eg.
,
format(X,a+'/,factor) is equivalent to a+factor (X-a).

Any other template is assumed to be a function to be applied to the expres-

sion; the result is then formatted according to the rest of the template chain.

Examples

(cl) format((a+b*x)*(c-x)'2,'/,poly(x) //.factor)

;

3 2 2

(dl) bx -(2bc-a)x + c(bc-2a)i + ac

(c2) format ((l+2*e*(q+r*cos(g)) *2)*4,’/,series(e,2) ,*/,trig(g) ,'/.f)

;

2 2 2

(d2) l+e(4(r +2q)+4 cos(2 g) r +16 cos(g) q r)

2 4 2 2 4 4

+e (3(3r +24q r +8q)+3 cos(4 g) r

3 2 2

+ 24 cos(3 g) q r +24 cos(g) qr(3r +4q)

2 2 2

+ 12 cos(2 g) r (r + 6 q)) + ...

(c3) format ((l+2*a+a'‘2)*b + a*(l+2*b+b"2) , '/.sum, '/.product //.factor)

;

2 2

(d3) a (b + 1) + (a + 1) b

(c4) format(expaiid((l+i“4)*y‘2+(l+x“8)*y“4) ,'/.p(y) ,'/.f (a*2-2))

;

4 2 4 2 4

(d4) (x - a X + 1) (x + a X + 1) y

2 2 2

+ (x - a X + 1) (x + a X + 1) y

(c5) format (expand((a+x)“3-a“3) ,'/.f-a“3)

;

3 3

(d5) (x + a) - a

format can also be used to focus simplifications on manageable pieces of large

expressions.

3

to to

Table 1: Template keywords
4

The

order

of

the

pieces

corresponds

to

the

internal

ordering;

subtemplate

usage

may

be

awkward.

See

the

documentation

of

coerce

Jjag

for

a

description

of

the

coercions

used.

jS
"a
B
V

M
3
tt

bo
C

'a
>
*3

cr

o

«D

a
(0

4
XI

tc

Table 1: Template keywords continued.

5

(c6) f oo :X“2*SIN(Y) -4-2*X‘2*SIN(Y) ~2+X-4*C0S(Y) “4

-2*X‘4*C0S(Y)“2+X“4+X"2+1$

(c7) trigsimpCf oo)

;

4 2 4 4 2 4

(d7) (x + X) cos (y) - 2 x cos (y) + x +1

(c8) format(f oo,*/,p(x) ,
trigs imp)

;

4 4 2 4

(d8) X sin (y) + x cos (y) + 1

The following examples illustrate the use of subtemplates

(c9) 11: [l+2*a+a‘2,l+2*b+b'-2,l+2*c+c"2]$

(clO) format (11 list ;

2 2 2

(dlO) [(a + 1) , (b + 1) , (c + 1)]

(cll) formatdl, '/.list [*/,noop, */,f])

;

2 2 2

(dll) Ca + 2 a + 1 , (b + 1) , c + 2 c + 1]

(cl2) format (11
,
'/.list ['/.noop

,
'/.ditto ('/.f)]) ;

2 2 2

(dl2) [a + 2 a + 1, (b + 1) ,
(c + 1)]

The following examples illustrate the usage with ‘bags.’

(cl3) format ([a=b, c=d, e=f] .'/.equation);

(dl3) [a, c, e] = [b, d, f]

(cl4) f ormat('/.,'/.list)

;

(dl4) [a = b, c = d, e = f]

(cl5) ml :matrix([a“2+2*a+l=q,b''2+2*b+l=r] ,

[c“2+2*c+l=s,d“2+2+d+l=t])$

(cl6) format(ml, '/.equation, '/.matrix ['/.noop, '/.list ['/.noop, '/.factor]])

;

[2 2]

[a + 2a+l b + 2b + l] [q r]
(die) [] = []

[2 2][st]
[c +2c+l (d+1)]

The more concise format(ml,'/.eq,'/.el(2,2) ,'/.f) ; obtains the same result.

And a more involved example:

(cl7) sqrtp(f) :=not(atom(f)) and op(f)=’sqrt$

6

(cl8) first(solve(a*i~2+b*x-(b-2*a)/4,x))

;

2 2

sqrt(b +ab-2a)+b
(dl8) X =

2 a

(cl9) format ('/,,*/,rhs,*/,preformat(*/,p(match(sqrtp)))

,

'/.match(sqrtp) .’/.airgd) ,'/.f)

;

sqrt((b - a) (b + 2 a)) b

(dl9) X =

2 a 2 a

2.1 User defined templates

New templates can be defined by giving the template keyword the property

formatter; the value should be a function (or lambda expression) of the ex-

pression to be formatted and any parameters for the template.

For example, ‘/.rectform and */,if could be defined as

put(*/,rectform,lambda([c] ,

block([r: rectformlist(c)] ,

format_piece(r [1]) +*/,!* format_piece(r [2])))

,

formatter)$

put(*/,if, lambdaC [x.test] ,

if test(x) then format_piece(x, 1)

else format_piece(x,2))

,

formatter)$

Tools useful for defining templates are the following.

f ormat-piece(piece,{n<A}) Function

Format a given piece of an expression, automatically accounting for

subtemplates and the remaining template chain. A specific subtem-

plate, rather than the next one, can be selected by specifying nth.

coerceJ3ag(op, ezpr) Function

Attempts to coerce ezpr into an expression with op (one of ,

"[" or matrix) as the top-level op-

erator. It coerces the expression by swapping operands between

layers - but only if adjacent layers are also lists, matrices or rela-

tions. This model assumes that a list of equations, for example, can

be viewed eis an equation whose sides are lists. Certain combina-

tions, particularly those involving inequalities may not be meaning-

ful, however, so some caution is advised.

7

3 COEFLIST; Determining coefficients

We define the ‘algebras’ of polynomials, trigonometric sums and power series to

be those expressions that can be cast into the following forms.

TK,...)

S{v,0)

|t T = ^CiCos(mi,iUi + •) +^ Sj sin(mi ifi H
)|

,

S = 'Y^CiV^^\Pn <o \ .

The variables Vi may be any atomic expression in the sense of ratvaLrs[l]. The
shorthands operator(op) and match(predicate) may be used to specify all

subexpressions having op as an operator, or that pass the predicate, respectively.

The coefficients Ci and s* are general Macsyma expressions. In principle

they would be independent of the variables Uj, but in practice they may contain

non-polynomial dependence (or non-trigonometric, in the trigonometric case).

These non-polynomial cases would include expressions like (1-1- 1)”, where n is

symbolic. Likewise, (x‘*)*' is, in general, multivalued; unless a = 1 ot h ^ Z or

radexpaiid=all, it will not be interpreted as x®** G V. Furthermore, we extend

the algebras to include lists, vectors, matrices and equations, by interpreting a

list of polynomials, say, as a polynomial with lists as coefficients.

The exponents pi in series are restricted to numbers, but the exponents

Pj^i and multiples rrij^i for polynomials and trigonometric sums may be general

expressions (excluding bags).

The following functions construct a list of the coefficients and ‘keys’, that

is, the exponents or multiples. Note that these are sparse representations — no

coefficients are zero.

coeffs(P,t;i,...) [[%poly,Ui, ...],[ci,pi,i,...],...]

trig-coeff s(r, ui, . .
.)

[[%trig, vi , . .
.], [[ci, mi,i, ...],.. .], [[si, ...],..

.]]

series_coeffs(5,u, C>) ^ [[%series, u, O], [ci,pi], . .
. ,

[cn,Pn]]

Taylor_coeffs(5,t;, C>) ^ [[%Taylor, u, O], [ci,pi], . .
. , [cn.Pn]]

The latter two functions both expand an expression through order O, but the se-

ries version only carries expands arithmetic operations and is often considerably

faster than Taylor_coeff s.

Examples:

8

(c20) cll : coells ((a+b*x)*(c-x)"2,x)

;

2 2

(d20) [[y.poly.x]
, [a c ,0],[b c - 2 a c,l],[a -2b c,2],[b,3]]

(c21) map('first .rest (coefls

(

(a+b*x)*(c-x) ~2=q0+ql*x+q2*x~2+q3*x“3,x)))

;

2 2

(d21) [ac =qO,bc -2ac=ql,a-2bc=q2,b= q3]

(c22) trig_coeffs(2*(a+cos(x))*cos(x+3*y) ,x,y)

;

(d22) CC’/.trig.x.y] . [] , [[1,0,3], [2 a. 1 ,3] . [1 , 2,3]]]

(c23) series_coeffs((a+b*x)*(c-x)~2,x,2)

;

2 2

(d23) [['/,series,x,2]
, [a c ,0],[b c - 2 a c,l],[a -2b c,2]]

(c24) coef f s ((a+b*x)*siii(x) ,x)

;

(d24) [[’/.poly.x] , [a siii(x) , 0] , [b siii(x),l]]

(c25) coeff s((a+log(b)+x)*(c-log(x)) “2,operator(log))

;

2 2

(d25) [['/,poly,log(x) ,log(b)] , [a c ,0,0],[c x,0,l],[- 2 a c,l,0],

[- 2 c x,l,l] , [a,2,0] , [x,2,l]]

3.1 Related functions

get-coei(clisi,ki, . .
.)

Function

Gets the coefficient from the coefficient list clist corresponding to

the keys Aj. The keys are matched to variable powers when clist is a

'/.poly, '/.series or '/.Taylor form. If clist is a '/.trig then ki should

be sin or cos and the remaining keys are matched to multipliers.

uncoef(c/w<) Function

Reconstructs the expression from a coefficient list clist. The coeffi-

cient list can be any of the coefficient list forms.

partition-poly(ezpr,<est,TJi, . .
.)

Function

Partitions expr into two polynomials; the first is made of those mono-

mials for which the function test returns true and the second is the

remainder. The test function is called on the powers of the Vi.

-paLititioii-tTig{expr,sintest,costest,Vi , . .
.)

Function

9

Trigonometric analog to partition-poly; The functions sintesi and

cosiest select sine and cojsine terms, respectively; each are called on

the multipliers of the Uj.

partition_series(ezpr,tesi,v,0) Function

partitionJ'aylor(ea:pr, test, Function

Analog to partition^oly for series.

Examples:

(c26) get_coef (CL1,2)

;

(d26) a - 2 b c

(c27) uncoef(cll);

3 2 2 2

(d27) bx +(a-2bc)x +(bc -2ac)x+ac

(c28) partition_poly((a+b*x)*(c-x)~2, 'evenp.x)

;

2 2 3 2

(d28) [(a -2bc)x +ac,bx +(bc -2ac)x]

3.2 Support functions

ma.tch.iTLgjpBLrts{expr, predicate, args. . .) Function

Returns a list of all subexpressions of expr for which the application

predicate (piece, args. ..) returns True.

function-calls(expr,/iin.ctzo7is. .
.)

Function

Returns a list of all calls in expr involving any of functions.

function_axguments(e*pr,/unctions.

.

.) Function

Returns a list of all argument lists for calls to functions in expr.

Examples:

(c29) t2: (a+log(b)*x)*(c-log(x)
)
“2$

(c30) match.ing_parts(t2,constantp)

;

(d30) [2, - 1]

(c31) function_calls(t2,log)

;

(d31) [log(x), log(b)]

10

4 Availability

This package heis been tested in Macsyma Inc.’s versions 418.85 for Genera 8.3

and 418.1 for Sparc computers under SunOS 4.1.3, as well as the DOE ‘maxima’

version 4.155. The Lisp source code is available from the author.

Acknowledgments

The author wishes to thank Jeffrey Golden (Macsyma, Inc.) for sharing his ideas

which led to expanding the scope of the package. We thank Richard Fateman

(U. C. Berkeley) for teaching us much about the internals of Macsyma.

References

[1] Symbolics Inc., Macsyma Reference Manual, Symbolics Inc., Burlington

MA., 1988.

[2] Knuth, Donald, Seminumerical Algorithms, The art of computer program-

ming, Vol. 2. Addison-Wesley, 1969.

[3] Golden, Jeffrey P., private communication.

[4] Griesmer, J. H., Jenks, R. D. and Yun, Y. Y., “A FORMAT statement in

SCRATCHPAD,” SIGSAM Bulletin (9), 1975, pp. 24-25.

[5] Barnett, M. P. and Perry, K. R.
,
“Hierarchical Addressing in Symbolic

Computation,” Computers Math. Applic.
,
to appear.

A Implementation

In this appendix, we describe some of the most important elements of the im-

plementation. It is not our intention to describe every facet in detail, rather,

we offer it as an overview to the lisp code, and as a guide to anyone wishing to

implement similar facilities for another CAS.

A,1 Coefficient Lists

The fundamental algorithm for converting polynomials, poisson series, etc. into

canonical representations, such as the coefficient lists defined here, is as follows.

First, an ‘arithmetic’ is implemented for the new representation. That is, the

code to add, multiply and exponentiate (at least) objects in the new form is

written (See [2] for algorithms). An expression is then converted recursively; de-

pending on the main operator of the expression, its arguments are first converted

11

and then they are combined appropriately. Atoms are converted in whatever

way is appropriate for the representation.

This is the method used internally by the CRE and Poisson facilities of

Macsyma. An issue for us was whether it was best to leverage these exist-

ing facilities by transforming first to CRE or Poisson representations and from

there into coefficient lists, or whether we should reimplement the methods for

conversions directly into coefficient list form.

In the end, we decided to reimplement the method for polynomial and series

arithmetic. The primary reason is that the CRE (and Taylor) transforms the

entire expression into CRE form, including what will become the coefficients.

This is unnecessary work for our purposes, and in the application to format,

the work may immediately be undone at the next step. Indeed, if an expression

had already been format’d, the current code may leave the coefficients in the

correct form.

The Poisson package does not carry out any transformations of the coef-

ficients and, so, was suitable for use in conversion to trigonometric coefficient

lists. Ultimately, we rewrote much of the existing poisson package anyway. This

was both to add flexibility (particularly to allow non-integral multipliers) that

would be useful both here and to users of the Poisson package, and also to rem-

edy a long standing limitation of the package— it failed to detect when encoded

trigonometric arguments exceeded the predeclared bounds resulting in spurious

computations. Contact the author for information about this alternate Poisson

package. However, we have an implementation oftrig_coeffs that avoids using

Poisson, should our alternative Poisson package be unacceptable for whatever

reason.

Taylor_coeff s, the alternative conversion to series coefficient lists, does use

Taylor as described above; it is useful when full Taylor expansions are needed.

A. 2 Format

The basic operation of the formatting program is relatively simple; it is data-

driven by the templates. The first template in the chain is examined and if

it is a known formatting template, format binds the remaining template chain

and the subtemplates. It then calls the function associated with the template

on the expression and any parameters given to the template. Each template

function transforms the expression appropriately and then calls format-piece
on the appropriate pieces.

The function format-piece determines if there is a subtemplate that should

be applied to a given piece or if the next template in the chain should be used.

It then recursively invokes format to format the given piece with the selected

template.

12

J

I

I

